Comunicaciones

Resumen

Sesión Análisis Numérico y Optimización

Numerical approximation of a thermo-electromagnetic problem in axisymmetric geometries

Pablo Venegas

Universidad del Bío-Bío, Chile   -   Esta dirección de correo electrónico está siendo protegida contra los robots de spam. Necesita tener JavaScript habilitado para poder verlo.

In this talk we analyze a thermoelectrical problem arising from the modeling of induction heating processes. By taking advantage of the cylindrical symmetry, the three-dimensional problem reduces to a two-dimensional one on a meridional section, provided the current density, written in cylindrical coordinates, has only azimuthal component. A variational formulation in appropriate weighted Sobolev spaces is given and existence of solution is proved by applying a fixed-point argument. Moreover, uniqueness and additional regularity is proved under suitable assumptions on the physical coefficients. Finite element approximation combined with a fixed-point iteration are proposed and a priori error estimates are proved. Finally, we present numerical results which allow us to confirm the theoretical estimates and to assess the performance of the proposed method in a physical application.

Trabajo en conjunto con: D. Gómez (Universidade de Santiago de Compostela, España), P. Salgado (Universidade de Santiago de Compostela, España) y B. López-Rodríguez (Universidad Nacional de Colombia, Colombia).

Referencias

[1] A. Bermúdez, B. López-Rodríguez, F. J. Pena, R. Rodríguez, P. Salgado, and P. Venegas, Numerical solution of an axisymmetric eddy current model with current and voltage excitations. J. Sci. Comput., 2022, pp. 1-26.

[2] A. Bermúdez and R. Muñoz-Sola. Existence of solution of a coupled problem arising in the thermoelectrical simulation of electrodes. Quart. Appl. Math., 1999, pp. 621–636.

[3] I. Yousept. Optimal control of a nonlinear coupled electromagnetic induction heating system with pointwise state constraints. Ann. Acad. Rom. Sci. Ser. Math. Appl., 2010, pp. 45–77.

[4] J. Zhu, X. Yu, and A. F. D. Loula. Mixed discontinuous Galerkin analysis of thermally nonlinear coupled problem. Comput. Methods Appl. Mech. Engrg., 2011, pp. 1479–1489.

Ver resumen en PDF