Comunicaciones

Resumen

Sesión Lógica y Computabilidad

T-rough symmetric Heyting algebras with tense operators

Cecilia Segura Gallardo

Instituto de Ciencias Básicas - Universidad Nacional de San Juan, Argentina   -   Esta dirección de correo electrónico está siendo protegida contra los robots de spam. Necesita tener JavaScript habilitado para poder verlo.

T-rough Heyting algebras were introduced by Eric SanJuan in 2008 as an algebraic formalism for reasoning on finite increasing sequences over Boolean algebras in general and on generalizations of rough set concepts in particular. In this paper, we introduce the variety of algebras, which we call T-rough symmetric Heyting algebras. These algebras constitute an extension of T-rough Heyting algebras and a generalization of symmetric Heyting algebras of order n. Our main interest is the representation theory of tense operators on T-rough symmetric Heyting algebras. In order to do this, a discrete-style duality for these algebras is developed.

Trabajo en conjunto con: Carlos Gallardo (Departamento de Matemática, Universidad Nacional del Sur) y Gustavo Pelaitay (Instituto de Ciencias Básicas, Universidad Nacional de San Juan).

Referencias

[1] Ewa Orłowska, Ingrid Rewitzky, Discrete dualities for Heyting algebras with operators, Fundam. Inform. 81(1–3) (2007) 275–295.

[2] Aldo V. Figallo, Gustavo Pelaitay, Tense operators on De Morgan algebras, Log. J. IGPL 22(2) (2014) 255–267.

[3] Luisa Iturrioz, Sur une classe particuliere d’algebres de Moisil, C. R. Acad. Sci. Paris Sér., A-B 267 (1968) 585–588 (French).

[4] Luisa Iturrioz, Łukasiewicz and symmetrical Heyting algebras, Z. Math. Log. Grundl. Math. 23(2) (1977) 131–136.

[5] Luisa Iturrioz, Modal operators on symmetrical Heyting algebras, in: Universal Algebra and Applications, Warsaw, 1978, in: Banach Center Publ., vol.9, PWN, Warsaw, 1982, pp.289–303.

[6] Luisa Iturrioz, Symmetrical Heyting algebras with operators, Z. Math. Log. Grundl. Math. 9(1) (1983) 33–70.

[7] Eric SanJuan, Heyting algebras with Boolean operators for rough sets and information retrieval applications, Discrete Appl. Math. 156(6) (2008) 967–983.

[8] Aldo Victorio Figallo, Gustavo Pelaitay, Claudia Sanza, Discrete duality for TSH-algebras, Commun. Korean Math. Soc. 27(1) (2012) 47–56.

[9] C. Gallardo, A. Ziliani, Symmetrical Heyting algebras of order 3 ×3, Soft Comput. 25 (2021) 8839–8847.

Ver resumen en PDF