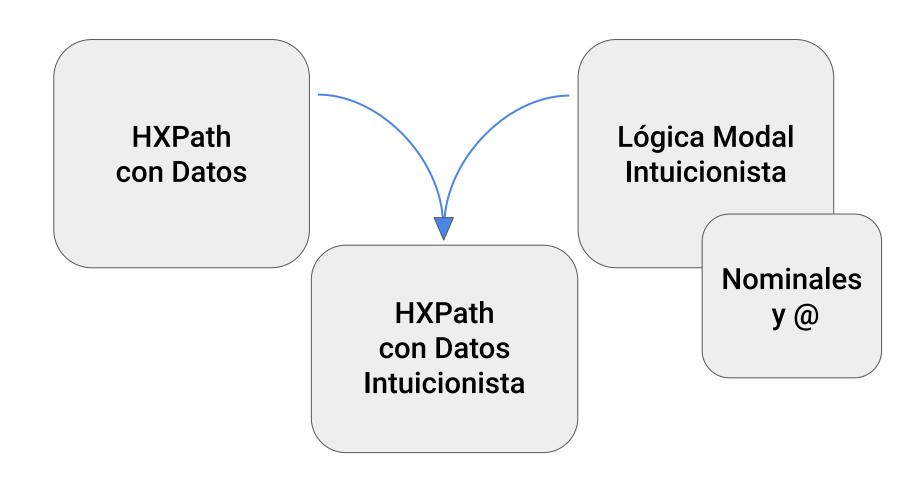
Una Lógica de XPath con Datos Intuicionista


Danae Dutto ~ Carlos Areces ~ Valentin Cassano ~ Raul Fervari

Dpto de Matemática - FCEFQyN - Universidad Nacional de Río Cuarto Sec. de Computación - FAMAF - Universidad Nacional de Córdoba CONICET

Septiembre 2022 - Neuquén, Argentina

En ésta charla

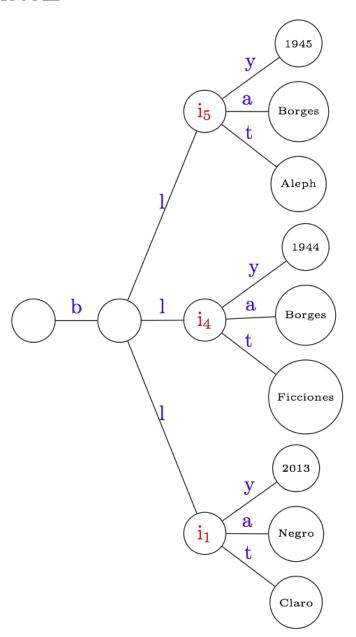
Un enfoque Intuicionista a una Lógica de XPath con Datos

XML y XPath

XML

Es un lenguaje utilizado para almacenar datos estructurados jerárquicamente.

Información


XPath

Consultas

Es uno de los lenguajes de consulta de documentos XML más utilizados

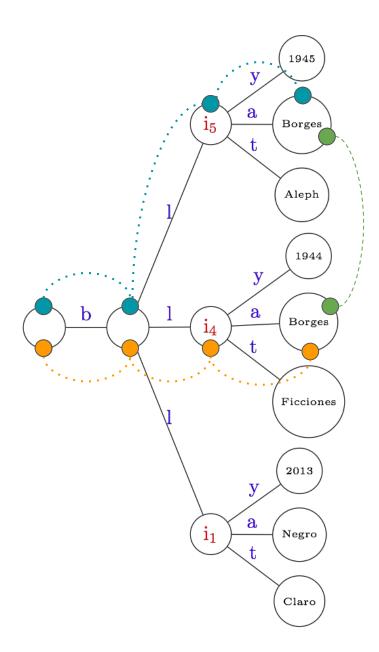
Estructura de un Documento XML

```
<br/>biblioteca>
 libro id=095-5>
  <titulo>El Aleph</titulo>
  <autor>Jorge Luis Borges</autor>
  <fecha>1945 <fecha/>
 </libro>
 libro id=647-4>
  <titulo>Ficciones</titulo>
  <autor>Jorge Luis Borges</autor>
  <fecha>1944<fecha/>
 </libro>
 libro id=670-1>
  <titulo>No se si he sido claro</titulo>
  <autor>Roberto Fontanarrosa</autor>
  <fecha>2013</fecha>
 </libro>
</biblioteca>
```


Consultas en XPath

Las expresiones de lenguaje nos permiten:

- → RECORRER
- → CONSULTAR


RECORRIDOS:

 \cdots b l [i₅] a

... b l [i₄] a

COMPARACIONES:

 \cdots b l $\begin{bmatrix} i_5 \end{bmatrix}$ a = b l $\begin{bmatrix} i_4 \end{bmatrix}$ a igualdad de datos

HXPath con Datos

El Lenguaje y sus Modelos

Los conjuntos PExp y NExp de expresiones bien formadas se definen por recursión mutua de la siguiente manera:

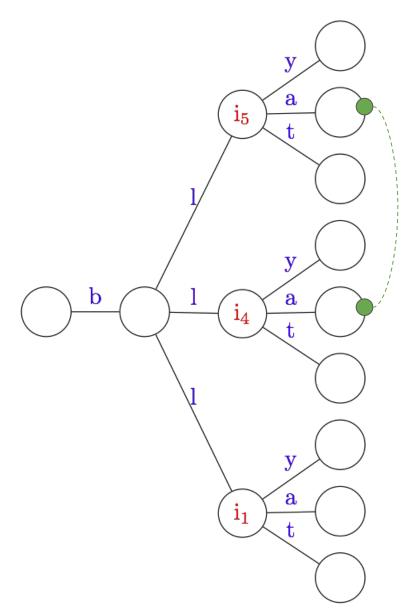
$$\begin{split} \mathsf{PExp} &:= \mathsf{a} \ | \ @_i \ | \ [\varphi] \ | \ \alpha\beta \\ \mathsf{NExp} &:= p \ | \ i \ | \ \bot \ | \ \varphi \lor \psi \ | \ \varphi \land \psi \ | \ \varphi \to \psi \ | \\ \langle \alpha = \beta \rangle \ | \ [\alpha = \beta] \ | \ \langle \alpha \neq \beta \rangle \ | \ [\alpha \neq \beta] \end{split}$$

Un modelo es una estructura $\mathfrak{M} = \langle W, \{R^a\}_{a \in \mathsf{Mod}}, \sim, V, g \rangle$ donde:

- 1. W es un conjunto no vacio de nodos;
- 2. R^{a} es una relación binaria sobre W (caminos);
- 3. \sim es una relación de equivalencia sobre W (igualdad);
- 4. $V: \mathsf{Prop} \to 2^W \ \mathsf{y} \ g: \mathsf{Nom} \to W \ \mathsf{son} \ \mathsf{funciónes} \ \mathsf{de} \ \mathsf{valuación} \ (\mathsf{props./noms.});$

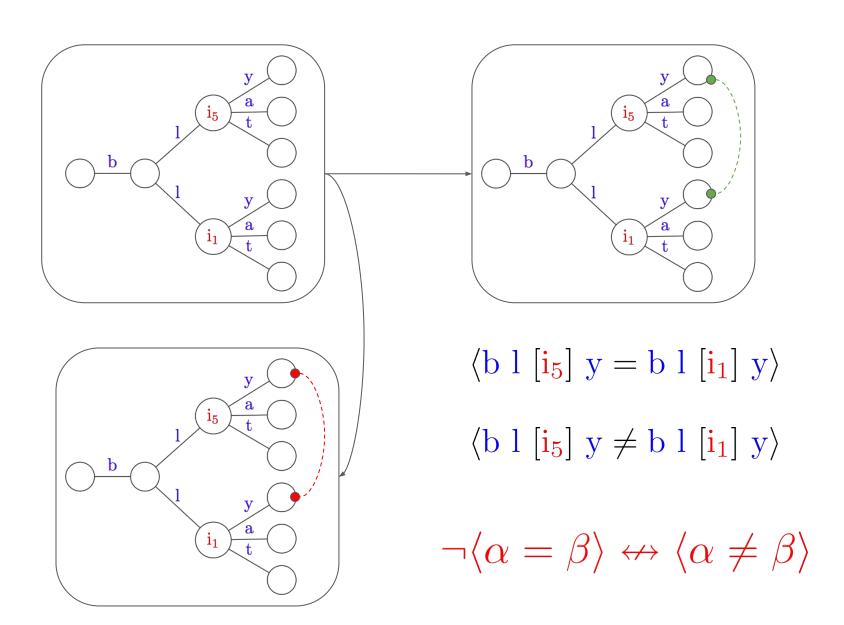
HXPath con Datos

La relación ⊩ de satisfacibilidad de una expresión en un modelo se define como:


Diamantes y Comparaciones en HXPath con Datos

Expresando comparaciones en HXPath

$$\langle b \mid [i_5] \mid a = b \mid [i_4] \mid a \rangle$$


 $\rightarrow \mathcal{M}, r \Vdash \langle b \mid [i_5] \mid a = b \mid [i_4] \mid a \rangle$ sii exiten nodos $u, v \in W$ t.q

- $\rightarrow \mathcal{M}, r, u \Vdash b \mid [i_5]$ a
- $\rightarrow \mathcal{M}, r, v \Vdash b \mid [i_4]$ a
- $\rightarrow u \sim v$

¿Por qué un enfoque intuicionista?

¿Por qué un enfoque intuicionista?

IHXPath con Datos

Un modelo intuicionista es una estructura $\mathcal{M} = \langle M, \preccurlyeq, \{\mathfrak{M}_m\}_{m \in M} \rangle$ donde:

$$\mathfrak{M}_m = \langle W_m, \{R_m^{\mathsf{a}}\}_{\mathsf{a} \in \mathsf{Mod}}, \approx_m, \sim_m, \nsim_m, V_m, g_m \rangle$$
 es un modelo de datos y

- 1. M es un conjunto no vacio parcialmente ordenado por \preccurlyeq ;
- 2. $m \preccurlyeq m'$ implica: $W_m \subseteq W_{m'}$; $R_m^{\mathsf{a}} \subseteq R_{m'}^{\mathsf{a}}$; $\sim_m \subseteq \sim_{m'}$;
- 3. $m \preceq m'$ implica para todo $p \in \mathsf{Prop}, V_m(p) \subseteq V_{m'}(p)$;
- 4. $m \preceq m'$ implica para todo $n \in \text{Nom}$, $g_m(n) = g_{m'}(n)$;
- 5. \approx_m es una relación de equivalencia en W (nominales);
- 6. \sim_m es una relacion binaria sobre W_m t.q. para todo $w_1, w_2, w_3 \in W_m$:

$$(w_1, w_1) \notin \boldsymbol{\nsim}_m^c$$

 $(w_1, w_2) \in \boldsymbol{\nsim}_m^c$ implies $(w_2, w_1) \in \boldsymbol{\nsim}_m^c$
 $(w_1, w_3) \in \boldsymbol{\nsim}_m^c$ implies $(w_1, w_2) \in \boldsymbol{\nsim}_m^c$ or $(w_2, w_3) \in \boldsymbol{\backsim}_m^c$

7. se cumple ademas que: $m \preceq m'$ implica $\approx_m \subseteq \approx_{m'}$; y $\nsim_m^c \subseteq \nsim_{m'}^c$.

IHXPath con Datos

La relación II- de satisfacibilidad se mantiene para

$$\begin{split} \mathsf{PExp} &:= \mathsf{a} \ | \ @_i \ | \ [\varphi] \ | \ \alpha\beta \end{split}$$

$$\mathsf{NExp} &:= p \ | \ i \ | \ \bot \ | \ \varphi \lor \psi \ | \ \varphi \land \psi \ | \ \langle \alpha = \beta \rangle \ | \ \langle \alpha \neq \beta \rangle \end{split}$$

El intuicionismo requiere condiciones más fuertes para

- $\rightarrow \mathcal{M}, m, w \Vdash \varphi \rightarrow \psi$ sii para todo $m \preccurlyeq m',$ $\mathcal{M}, m', w \Vdash \varphi \text{ implica } \mathcal{M}, m', w \Vdash \psi$
- $\rightarrow \mathcal{M}, m, w \Vdash [\alpha = \beta]$ sii for all $m \preccurlyeq m'$, for all $u, v \in W_m$ $\mathcal{M}, m, w, u \Vdash \alpha \text{ y } \mathcal{M}, m, w, v \Vdash \beta$ implica $u \sim v$.

Trabajo realizado, en progreso, y a futuro

- Modelos para IHXPath con Datos
- Axiomatización para los modelos definidos
- Resultados de Correctitud y Completitud al estilo Henkin

- Extensiones con axiomas y reglas puras
- Completitud fuerte para dichas extensiones
- Decidibilidad
- Complejidad
- Lógicas con variantes de comparación

Referencias Principales

- Carlos Areces and Raul Fervari. Axiomatizing hybrid xpath with data.
 Logical Methods in Computer science, 17(3), 2021.
- → Carlos Areces and Balder ten Cate. Hybrid Logics, In Handbook of Modal Logic, pages 821–868. Elsevier, 2007.
- Torben Bra uner. Hybrid Logic and its Proof-Theory. Springer, 2011.

Gracias