Ignacio Nicolás Bono Parisi

Inés Pacharoni

UMA Neuquén 2022

23 de Septiembre, 2022

Preliminares

- Un peso matricial de tamaño N con soporte en un intervalo real (a,b), es una función $W:\mathbb{R}\to M_N(\mathbb{C})$ Hermitiana definida positiva para casi todo punto en (a,b), se anula fuera de (a,b), y $\int_{\mathbb{R}} x^n W(x) dx < \infty$.
- Dados $P, Q \in M_N(\mathbb{C})[x]$, se asocia al peso el producto interno

$$\langle P, Q \rangle_W = \langle P, Q \rangle = \int_{\mathbb{R}} P(x)W(x)Q(x)^*dx.$$

• Con este producto interno se construye una única sucesión de polinomios mónicos ortogonales $\{P(x, n)\}$

Preliminares

Dado un operador diferencial $\mathfrak{D}=\sum_{j=0}^m\partial^jF_j$ y un polinomio matricial Q(x) tenemos que

$$Q(x)\cdot\mathfrak{D}=\sum_{j=0}^m\partial^j(Q(x))F_j(x).$$

ullet Introducimos el álgebra $\mathcal{D}(W)$ asociada al peso W

$$\mathcal{D}(W) = \left\{ \mathfrak{D} = \sum_{j=0}^m \partial^j F_j \text{ tales que } P(x,n) \cdot \mathfrak{D} = \Lambda_n P(x,n) \right\}.$$

Problema de Bochner

Tenemos entonces W peso de tamaño $N \times N$,

$$W \to \langle \quad , \quad \rangle_W \to P(x,n) \to \mathcal{D}(W).$$

El Problema de Bochner: ¿Qué pesos W cumplen que su álgebra $\mathcal{D}(W)$ contiene algún operador de segundo orden $\mathfrak{D} = \partial^2 F_2 + \partial F_1 + F_0$?.

$$P''(x, n)F_2 + P'(x, n)F_1 + P(x, n)F_0 = \Lambda_n P(x, n)$$

Solución:

N = 1, resuelto por el mismo Bochner.

N > 1, *resuelto* por R. Casper y M. Yakimov.

Problema de Bochner

Para pesos de tamaño N=1 (caso escalar). Salvo cambio de variable afín estas son las tres familias de soluciones.

• Hermite:

$$w(x) = e^{-x^2}, \quad \mathfrak{d} = \partial^2 + \partial(-2x)$$

• Laguerre :

$$w(x) = x^{\alpha} e^{-x} 1_{(0,\infty)}(x), \quad \mathfrak{d} = \partial^2 x + \partial(\alpha + 1 - x), \ \alpha > -1$$

Jacobi :

$$w(x) = (1 - x)^{\alpha} (1 + x)^{\beta} 1_{(-1,1)}(x)$$
$$\mathfrak{d} = \partial^{2} (1 - x^{2}) + \partial (\beta - \alpha - (\alpha + \beta + 2)x), \ \alpha, \beta > -1,$$

Para el caso N > 1, necesitaremos antes introducir las siguientes definiciones.

- Álgebra completa.
- Transformación Biespectral no conmutativa de Darboux.

Definición: Dado un peso W de tamaño $N \times N$, decimos que su álgebra asociada $\mathcal{D}(W)$ es un **álgebra completa** si existen $D_1, \ldots, D_N \in \mathcal{D}(W)$ no nulos tal que $D_1 + \cdots + D_N$ es un elemento regular del centro, y $D_iD_j = 0$, para $i \neq j$.

Definición: Dados dos pesos W, \widetilde{W} , decimos que \widetilde{W} es una **transformación biespectral no conmutativa de Darboux** de W si existe un operador diferencial $\mathfrak{D} \in \mathcal{D}(W)$ que puede factorizarse como $\mathfrak{D} = \mathfrak{vn}$ y cumple

- $\widetilde{\mathfrak{D}} = \mathfrak{n}\mathfrak{v}$ está en $\mathcal{D}(\widetilde{W})$.
- $P(x, n) \cdot v$ es una sucesión de polinomios ortogonales para el peso \widetilde{W} . (siendo P(x, n) la sucesión ortogonal de mónicos de W)

Ahora sí... Para N > 1

Teorema de clasificación (Casper y Yakimov): Sea W un peso $N \times N$ tal que $\mathfrak{D} = \partial^2 F_2 + \partial F_1 + F_0 \in \mathcal{D}(W)$ con F_2W hermitiana definida positiva y tal que $\mathcal{D}(W)$ es completa.

Entonces W es una transformación de Darboux de un peso diag (w_1,\ldots,w_N) , donde w_i es un peso escalar clásico para todo i. Más aún, $W(x)=T(x)\operatorname{diag}(w_1,\ldots,w_N)T(x)^*$ para alguna T(x) racional. Recíprocamente, si W es una transformación de Darboux de una suma directa de pesos escalares clásicos, entonces $\mathcal{D}(W)$ es completa.

Ejemplo:

$$W(x) = e^{-x^2} \begin{pmatrix} 1 + a^2 x^2 & ax \\ ax & 1 \end{pmatrix}$$

es solución al problema de Bochner.

$$\widetilde{\mathfrak{D}} = \partial^2 I + \partial \begin{pmatrix} -2x & 2a \\ 0 & -2x \end{pmatrix} - \begin{pmatrix} \frac{4}{a^2} + 2 & 0 \\ 0 & \frac{4}{a^2} \end{pmatrix} \in \mathcal{D}(W).$$

Además $\mathcal{D}(W)$ contiene dos operadores D_1,D_2 de orden 4 con autovalores

$$\Lambda_n(D_1) = \begin{pmatrix} \lambda(n) & 0 \\ 0 & 0 \end{pmatrix}, \ \Lambda_n(D_2) = \begin{pmatrix} 0 & 0 \\ 0 & \lambda(n) \end{pmatrix}.$$

$$\lambda(n) = -\frac{a^4n^2 + a^4n + 4a^2n + 2a^2 + 4}{2a^3}$$

Luego se tiene que
$$\Lambda_n(D_1)\Lambda_n(D_2)=0=\Lambda_n(D_2)\Lambda_n(D_1)$$
, y $\Lambda_n(D_1)+\Lambda_n(D_2)=\lambda(n)I$.

Así D_1 , D_2 forma un sistema ortogonal de $\mathcal{D}(W)$, luego el álgebra será completa y W será transformación biespectral de Darboux de una diagonal de pesos clásicos.

En este caso de pesos de una diagonal de pesos de Hermite, $e^{-x^2}I$. Veamos el Darboux explícitamente.

Tomamos
$$\mathfrak{D} = \partial^2 I + \partial \begin{pmatrix} -2x & 0 \\ 0 & -2x \end{pmatrix} + \begin{pmatrix} 2 + \frac{4}{a^2} & 0 \\ 0 & \frac{4}{a^2} \end{pmatrix} \in \mathcal{D}(e^{-x^2}I).$$
 Factorizamos este operador como $\mathfrak{D} = \mathfrak{vn}$.

$$\mathfrak{v} = \partial \begin{pmatrix} 0 & 1 \\ 1 & -ax \end{pmatrix} - \frac{2}{a}I,$$

$$\mathfrak{n} = \partial \begin{pmatrix} -ax & -1 \\ -1 & 0 \end{pmatrix} + \begin{pmatrix} -a - \frac{2}{a} & 0 \\ 0 & -\frac{2}{a} \end{pmatrix}.$$

Se tiene que $\widetilde{\mathfrak{D}}=\mathfrak{n}\mathfrak{v}$ y $P(x,n)\cdot\mathfrak{v}$ es una sucesión de polinomios ortogonales de W. Además

$$W = \begin{pmatrix} 1 & ax \\ 0 & 1 \end{pmatrix} \begin{pmatrix} e^{-x^2} & 0 \\ 0 & e^{-x^2} \end{pmatrix} \begin{pmatrix} 1 & ax \\ 0 & 1 \end{pmatrix}^*.$$

¿Qué estamos perdiendo asumiendo estas hipótesis 'naturales' en la clasificación?.

Veamos la siguiente solución al Problema Matricial de Bochner. Consideremos el peso matricial

$$W(x) = e^{-x^2} \begin{pmatrix} e^{2bx} + a^2x^2 & ax \\ ax & 1 \end{pmatrix}.$$

Se tiene que el álgebra $\mathcal{D}(W)$ admite el siguiente operador diferencial de orden 2

$$D = \partial^2 I + \partial \begin{pmatrix} -2x + 2b & -2abx + 2a \\ 0 & -2x \end{pmatrix} + \begin{pmatrix} -2 & 0 \\ 0 & 0 \end{pmatrix}.$$

Teorema

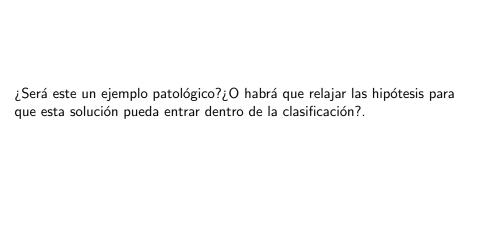
El álgebra asociada a W es un álgebra polinomial sobre D, es decir, $\mathcal{D}(W)=\mathbb{C}[D].$

Como corolario, el álgebra $\mathcal{D}(W)$ no es completa, pues no existen dos operadores no nulos $D_1, D_2 \in \mathcal{D}(W) = \mathbb{C}[D]$ tales que $D_1D_2 = 0$. Luego W no es transformación biespectral no conmutativa de Darboux de una diagonal de pesos escalares clásicos.

Sin embargo, sí puede factorizarse el peso de la siguiente manera

$$W(x) = \begin{pmatrix} 1 & ax \\ 0 & 1 \end{pmatrix} \begin{pmatrix} e^{-x^2+2bx} & 0 \\ 0 & e^{-x^2} \end{pmatrix} \begin{pmatrix} 1 & ax \\ 0 & 1 \end{pmatrix}^*.$$

Está estrechamente relacionado con la diagonal de pesos clásicos de Hermite diag (e^{-x^2+2bx},e^{-x^2}) pero no podrán ser transformación biespectral no conmutativa de Darboux.



Muchas gracias por escuchar :)