Expositor: Daniel A. Jaume (Universidad Nacional de San Luis, djaume@unsl.edu.ar) Autor/es: Daniel A. Jaume (Universidad Nacional de San Luis, djaume@unsl.edu.ar); Gonzalo Molina (Universidad Nacional de San Luis, gonzalo.molina.tag@gmail.com); Cristian Panelo (Universidad Nacional de San Luis, cristian.panelo.tag@gmail.com); Rodrigo Sota (Universidad Nacional de San Luis, rodrigo.sota.tag@gmail.com)

An unicyclic graph is a connected graph containing exactly one cycle. The induced cycled in U is denoted by C. An unicyclic graph U is said that is nonsingular if its adjacency matrix $A(U)$ is nonsingular. Unicyclic graphs are of three types: T1, T2 and T3. In this work we give formulas for the inverse of nonsingular unicyclic in terms of their matching structure.

Given an unicyclic graph U, a walk W in U and a matching M of U, the walk W is called an alternating walk with respect to M if it has edges that are alternately unmatched and matched in M. An alternating walk W with respect to M is said a coaugmenting walk in U with respect to M if W starts and ends at matched edges. The set of all coaugmenting walks from i to j (two different vertices of U) with respect to any maximun matching M of U is denoted by $\operatorname{CoW}(U, i, j)$.

Let U be a nonsingular unicyclic graph of Type 1 of order n. Then

$$
A^{-1}(U)=\operatorname{Inv}_{1}(U):=\sum_{W \in \operatorname{CoW}(U, i, j)}(-1)^{\left\lfloor\frac{|W|}{2}\right\rfloor},
$$

where $|W|$ is the length of the walk W.
For each vertex $v \in V(C), T(v)$ denotes the pendant tree at v. We define $P S u p p(U):=$ $\bigcup_{u \in V(C)} S u p p(T(u))$. A matching M of U is called non-sun matching if $e \in M$ and $|e \cap E(C)|>1$, then $|e \cap E(C)|=2$. Let $i, j \in V(U)$, the set of all the coaugmenting walks from i to j with respect to any non-sun maximum matching is denoted by $\operatorname{Co} W_{n s}(U, i, j)$. These walks are called non-sun coaugmenting walks.

For every nonsingular unicyclic U of type $2 A(U)^{-1}=\operatorname{Inv} v_{1}(U)+\operatorname{Inv} v_{2}(U)$, where $\operatorname{Inv}(U)$ and $I n v_{2}(U)$ are two matrices of order n given by

$$
\operatorname{Inv}_{1}(U)_{i, j}:= \begin{cases}\frac{1}{2}(-1)^{\left\lfloor\frac{d_{w(i, j)}^{2}}{2}\right\rfloor}, & \text { if } i, j \in \operatorname{PSupp}(G) \text { and } \operatorname{Co} W_{n s}(U, i, j) \neq \emptyset \\ \frac{1}{2}(-1)^{\left\lfloor\frac{|C|}{2}\right\rfloor+\left\lfloor\frac{d(i, j)}{2}\right\rfloor,} & \text { if } i, j \in \operatorname{PSupp}(G) \text { and } \operatorname{CoW} W_{n s}(U, i, j)=\emptyset \\ 0, & \text { otherwise }\end{cases}
$$

where $d_{w}(i, j)$ is the length of a shorter non-sun coaugmenting walk from i to j, and $d(i, j)$ is the usual distance. And

$$
\operatorname{Inv}_{2}(U)_{i, j}:= \begin{cases}\sum_{W \in C o W(U, i, j)}(-1)^{\left\lfloor\frac{|W|}{2}\right\rfloor}, & \text { if } i, j \in V(U-C) \text { and } C o W(U-C, i, j) \neq \emptyset \\ 0, & \text { otherwise }\end{cases}
$$

For every nonsingular unicyclic U of type $3 A(U)^{-1}=\operatorname{Inv}_{2}(U)+\operatorname{Inv}_{3}(U)$, where $\operatorname{Inv}_{3}(U)$ is the matrix of order n given by

$$
\operatorname{Inv}_{3}(U)_{i, j}:= \begin{cases}\frac{1}{2}(-1)^{\left\lfloor\frac{d_{w}(i, j)}{2}\right\rfloor}, & \text { if } i, j \in \operatorname{PSupp}(G) \text { and } \operatorname{CoW}(U, i, j) \neq \emptyset \\ 0, & \text { otherwise. }\end{cases}
$$

