Expositor: Gonzalo Molina (Universidad Nacional de San Luis, lgmolina@unsl.edu.ar)
Autor/es: Gonzalo Molina (Universidad Nacional de San Luis, lgmolina@unsl.edu.ar); Daniel A. Jaume (Universidad Nacional de San Luis, djaume@unsl.edu.ar); Maikon Machado Toledo (Universidade Federal do Rio Grande do Sul, maikon.toledo@ufrgs.br); Luiz Emilio Allem (Universidade Federal do Rio Grande do Sul, emilio.allem@ufrgs.br); Vilmar Trevisan (Universidade Federal do Rio Grande do Sul, trevisan@mat.ufrgs.br)

Let G be a graph with n vertices. The support of the null space of $A(G)$ is denoted by $\operatorname{Supp}(G)$. Let T be a tree. The S-forest of T, denoted by $\mathcal{F}_{S}(T)$, is defined as the subgraph induced by the closed neighborhood of $\operatorname{Supp}(T)$. The N-forest of T, denoted by $\mathcal{F}_{N}(T)$, is defined as $\mathcal{F}_{N}(T):=T-\mathcal{F}_{S}(T)$. The core of G, denoted by $\operatorname{Core}(G)$, is the set of all the neighbors of the supported vertices of G.

A unicyclic graph G is a connected graph containing exactly one cycle. The induced cycle in G is denoted by C. A pendant tree of G at $v \in V(C)$, denoted $G\{v\}$, is the induced connected subgraph of G with maximum possible number of vertices, which contains the vertex v and no other vertex of C.

A unicyclic graph G is of Type I if and only if there exists at least one pendant tree $G\{v\}$ such that $v \notin \operatorname{Supp}(G\{v\})$. A unicyclic graph G is of Type $I I$ if and only if every pendant tree $G\{v\}$ is such that $v \in \operatorname{Supp}(G\{v\})$.

Let G be a unicyclic graph and C its cycle. Let $G-C=\bigcup_{i=1}^{k} T_{i}$, where T_{i} is a connected component of $G-C$.

We show that, if G is a unicyclic graph of Type I and $G\{v\}$ its pendant tree such that $v \notin \operatorname{Supp}(G\{v\})$, then

$$
\begin{aligned}
& \alpha(G)=|\operatorname{Supp}(G\{v\})|+|\operatorname{Supp}(G-G\{v\})|+\frac{\left|V\left(\mathcal{F}_{N}(G\{v\})\right)\right|+\left|V\left(\mathcal{F}_{N}(G-G\{v\})\right)\right|}{2}, \\
& \nu(G)=|\operatorname{Core}(G\{v\})|+|\operatorname{Core}(G-G\{v\})|+\frac{\left|V\left(\mathcal{F}_{N}(G\{v\})\right)\right|+\left|V\left(\mathcal{F}_{N}(G-G\{v\})\right)\right|}{2},
\end{aligned}
$$

and if G is a unicyclic graph of Type $I I$, then

$$
\begin{aligned}
& \alpha(G)=\left\lfloor\frac{|V(C)|}{2}\right\rfloor+\sum_{i=1}^{k}\left|\operatorname{Supp}\left(T_{i}\right)\right|+\frac{\left|V\left(\mathcal{F}_{N}\left(T_{i}\right)\right)\right|}{2}, \\
& \nu(G)=\left\lfloor\frac{|V(C)|}{2}\right\rfloor+\sum_{i=1}^{k}\left|\operatorname{Core}\left(T_{i}\right)\right|+\frac{\left|V\left(\mathcal{F}_{N}\left(T_{i}\right)\right)\right|}{2} .
\end{aligned}
$$

