S-DIAGONALIZACIÓN DE OPERADORES QUE CONMUTAN CON TRASLACIONES ENTERAS

Expositor: Diana Carbajal (Universidad de Buenos Aires - IMAS CONICET, dcarbajal@dm.uba.ar)

Autor/es: Alejandra Aguilera (Universidad de Buenos Aires - IMAS CONICET, aaguilera@dm.uba.ar); Carlos Cabrelli (Universidad de Buenos Aires - IMAS CONICET, cabrelli@dm.uba.ar); Diana Carbajal (Universidad de Buenos Aires - IMAS CONICET, dcarbajal@dm.uba.ar); Victoria Paternostro (Universidad de Buenos Aires - IMAS CONICET, vpater@dm.uba.ar)

En este trabajo estudiamos la estructura de operadores acotados que conmutan con traslaciones enteras actuando sobre un espacio invariante por traslaciones enteras $V \subset L^2(\mathbb{R}^d)$. Para dicho estudio, trabajamos con la función rango J de V. Esta es un mapa tal que a cada $\omega \in [0,1)^d$ le asigna el subespacio $J(\omega)$ cerrado de $\ell^2(\mathbb{Z}^d)$ generado por las fibras de V en ω . t t Dado $L:V \to V$ un operador acotado que conmuta con las traslaciones enteras, se puede definir lo que se denomina operador rango de L. Este es un mapa R tal que a cada $\omega \in [0,1)^d$ le asigna un operador acotado $R(\omega)$ que actúa en $J(\omega)$ y conmuta con modulaciones enteras. t tCuando V es generado por traslaciones enteras de finitas funciones, su función rango en casi todo $\omega \in [0,1)^d$ es un espacio de dimensión finita y en consecuencia $R(\omega)$ es una transformación lineal actuando en un espacio de dimensión finita en casi todo punto. t tExplotando estas propiedades, definimos lo que llamamos s-autovalor y s-autoespacio del operador L y encontramos sus relaciones con los autovalores y autoespacios del operador rango en cada ω . Finalmente, presentamos un nuevo concepto que denominamos s-diagonalización y damos condiciones necesarias y suficientes para que L sea s-diagonalizable en terminos de la diagonalización de su operador de rango. t tEste es un trabajo en conjunto con Alejandra Aguilera Aguilera, Carlos Cabrelli y Victoria Paternostro.