PESOS PARA LA ACOTACIÓN DE CIERTOS OPERADORES FRACCIONARIOS

Expositor: Gonzalo Ibañez Firnkorn (FAMAF - CIEM, gonzaibafirn@gmail.com) Autor/es: Gonzalo Ibañez Firnkorn (FAMAF - CIEM, gonzaibafirn@gmail.com)

Sean $0 \le \alpha < n$ y A una matriz invertible. Consideremos el operador maximal,

$$M_{\alpha,A^{-1}}f(x) = M_{\alpha}f(A^{-1}x).$$

Este operador esta acotado de $L^p(w^p)$ en $L^{q,\infty}(w^q)$ si y solo si $w \in \mathcal{A}_{A,p,q}$, donde $\mathcal{A}_{A,p,q}$ es una clase de pesos que depende de la matriz A. En cambio, $M_{\alpha,A^{-1}}$ esta acotado de $L^p(w^p)$ en $L^q(w^q)$ si y solo si el peso w cumple una condición de tipo testing.

Luego, con estas condiciones para los pesos se prueba la acotación $L^p(w^p) \to L^q(w^q)$ para operadores definidos de la siguiente forma: Sean A_1, A_2 matrices invertibles tales que $A_1 - A_2$ son invertibles, definimos T por

$$Tf(x) = \int_{\mathbb{R}^n} k_1(x - A_1 y) k_2(x - A_2 y) f(y) dy,$$

donde cada k_i , $1 \le i \le 2$, cumple condiciones fraccionarias de tamaño y regularidad.

Para los casos $A_2 = A_1^{-1}$ o $A_1 = -I$ y $A_2 = I$, obtenemos que el operador T esta acotado de $L^p(w^p)$ en $L^q(w^q)$, con $k_i(z) = |z|^{-\alpha_i}$, $\alpha_1 + \alpha_2 = n - \alpha$ si y solo si $w \in \mathcal{A}_{A_1,p,q} \cap \mathcal{A}_{A_2,p,q}$, generalizando el resultado probado en [1] donde se estudia el caso de pesos potencias y las matrices $A_1 = -I$ y $A_2 = I$.

Referencias

[1] Ferreyra, E. V., Flores, G. J. (2019). Weighted inequalities for integral operators on Lebesgue and $BMO^{\gamma}(\omega)$ spaces. Collectanea Mathematica, 70(1), 87-105.