Expositor: Mircea Petrache (PUC Chile, decostruttivismo@gmail.com)
Autor/es: Mircea Petrache (PUC Chile, decostruttivismo@gmail.com); Laurent Betermin (University of Vienna, betermin@math.ku.dk); Lucia De Luca (Universita di Pisa, lucia.deluca@unipi.it)

We study N-point configurations of points which minimize an energy of the form $\mathcal{E}[V](X):=$ $\sum_{1 \leq i<j \leq N} V(|X(i)-X(j)|)$, in which $V$ is a pairwise interaction potential with one well, and $X:\{1, \ldots, N\} \rightarrow \mathbb{R}^{2}$ is a configuration of N particles.

The geometric structure of minimizing configurations was first described by Heitmann-Radin 1981 and Theil 2006. They give conditions on $V$ under which $\mathcal{E}[V]$-minimizers tend to a triangular lattice as $N \rightarrow \infty$. Theil 2006 also presents numerical evidence that the square lattice $\mathbb{Z}^{2}$ should appear for other one-well $V$ 's. I will present recent work with L. Betermin and L. De Luca, in which we give for the first time a rigorous proof of such square-lattice crystallization. Some seemingly robust new principles and ideas are required in the proof.

Since our new potentials are obtained via a simple modification of the classical ones (basically, we enlarge the width of the "well. of $V$ ), this also shows in particular that a phase trasition occurs, from triangular to square lattice structures. If time allows, I will present several new directions and challenges opened by our method of proof.

