CONNECTIVITY OF THE REAL AND THE BRANCH LOCUS IN MODULI SPACE $\mathcal{M}_{0,[n+1]}$

Expositor: Atarihuana Ayala, Yasmina Fernanda(Departamento de Matemática y Estadística, Universidad de La Frontera Temuco, Chile)

Autor/es: Atarihuana Ayala, Yasmina Fernanda (Departamento de Matemática y Estadística, Universidad de La Frontera Temuco, Chile)

Let $\mathcal{M}_{0,[n+1]}$ be the moduli space of isomorphisms classes of (n + 1)-marked spheres, where $n \geq 3$. It is know that $\mathcal{M}_{0,[n+1]}$ has a complex orbifold structure of dimension n - 2. Moreover, the space $\mathcal{M}_{0,[n+1]}$ admits a natural real structure \hat{J} , this being induced by the complex conjugation on the Riemann sphere. The fixed points of \hat{J} are called the real points and these points corresponds to the classes of isomorphisms of marked spheres admitting an anticonformal automorphism. Inside this locus is the real locus $\mathcal{M}_{0,[n+1]}^{\mathbb{R}}$, consisting of those classes of marked spheres admitting an anticonformal involution. Let us denote by $\mathcal{B}_{0,[n+1]}$ the branch locus of $\mathcal{M}_{0,[n+1]}$ (the isomorphism classes of those (n + 1)-marked spheres with non-trivial group of conformal automorphisms). It is known that $\mathcal{B}_{0,[4]} = \mathcal{M}_{0,[4]}$ (as any collection of four points in the Riemann sphere is invariant by a subgroup of Möbius transformations isomorphic to \mathbb{Z}_2^2) and that $\mathcal{B}_{0,[n+1]} \neq \mathcal{M}_{0,[n+1]}$ for $n \geq 4$.

The main aim of this talk is to observe the following:

- 1. $\mathcal{B}_{0,[n+1]}$ is connected if either (i) $n \ge 4$ is even or (ii) if $n \ge 6$ is divisible by 3. It has exactly two connected components otherwise.
- 2. $\mathcal{M}_{0,[n+1]}^{\mathbb{R}}$ is connected for $n \geq 5$ odd. It is disconnected for n = 2r with $r \geq 5$ odd.

This is part of the results obtained for my Ph. D. Thesis under the supervision of R. A. Hidalgo and S. Quispe.

Partially supported by Proyecto Anillo ACT 1415 PIA-CONICYT.