CONNECTIVITY OF THE REAL AND THE BRANCH LOCUS IN MODULI SPACE $\mathcal{M}_{0,[n+1]}$

Expositor: Atarihuana Ayala, Yasmina Fernanda (Departamento de Matemática y Estadística, Universidad de La Frontera Temuco, Chile)
Autor/es: Atarihuana Ayala, Yasmina Fernanda (Departamento de Matemática y Estadística, Universidad de La Frontera Temuco, Chile)

Let $\mathcal{M}_{0,[n+1]}$ be the moduli space of isomorphisms classes of $(n + 1)$-marked spheres, where $n \geq 3$. It is known that $\mathcal{M}_{0,[n+1]}$ has a complex orbifold structure of dimension $n - 2$. Moreover, the space $\mathcal{M}_{0,[n+1]}$ admits a natural real structure $\mathring{\mathcal{J}}$, this being induced by the complex conjugation on the Riemann sphere. The fixed points of $\mathring{\mathcal{J}}$ are called the real points and these points correspond to the classes of isomorphisms of marked spheres admitting an anticonformal automorphism. Inside this locus is the real locus $\mathcal{M}^R_{0,[n+1]}$, consisting of those classes of marked spheres admitting an anticonformal involution. Let us denote by $\mathcal{B}_{0,[n+1]}$ the branch locus of $\mathcal{M}_{0,[n+1]}$ (the isomorphism classes of those $(n + 1)$-marked spheres with non-trivial group of conformal automorphisms). It is known that $\mathcal{B}_{0,[4]} = \mathcal{M}_{0,[4]}$ (as any collection of four points in the Riemann sphere is invariant by a subgroup of M"obius transformations isomorphic to \mathbb{Z}_2^2) and that $\mathcal{B}_{0,[n+1]} \neq \mathcal{M}_{0,[n+1]}$ for $n \geq 4$.

The main aim of this talk is to observe the following:

1. $\mathcal{B}_{0,[n+1]}$ is connected if either (i) $n \geq 4$ is even or (ii) if $n \geq 6$ is divisible by 3. It has exactly two connected components otherwise.

2. $\mathcal{M}^R_{0,[n+1]}$ is connected for $n \geq 5$ odd. It is disconnected for $n = 2r$ with $r \geq 5$ odd.

This is part of the results obtained for my Ph. D. Thesis under the supervision of R. A. Hidalgo and S. Quispe.

Partially supported by Proyecto Anillo ACT 1415 PIA-CONICYT.