TOPOLOGICAL FROBENIUS RECIPROCITY AND INVARIAN HERMITIAN FORMS

Expositor: Tim Bratten (UNICEN, bratten@exa.unicen.edu.ar)

Autor/es: Tim Bratten (UNICEN, bratten@exa.unicen.edu.ar); Mauro Natale (UNICEN, mauro_natale@hotmail.com)

Motivated by a question about Frobenius reciprocity, raised by D. Vogan in [3, Question 10.2], we prove a topological Frobenius reciprocity and use it to study invariant Hermitian forms on representations. In particular, let G_0 be a real reductive group of Harish-Chandra class with complexified Lie algebra \mathfrak{g} . Suppose $\mathfrak{p} \subseteq \mathfrak{g}$ is a *nice* parabolic subalgebra [3]. Then the normalizer, L_0 , of \mathfrak{p} in G_0 is a Levi subgroup. Let S be the orbit of \mathfrak{p} in the corresponding generalized flag manifold and let q be the vanishing number for S. Suppose V_{\min} is a minimal globalization for L_0 with regular, antidominant infinitesimal character and let \mathfrak{u} be the nilradical of \mathfrak{p} . Topological Frobenius reciprocity is the natural correspondence

 $\operatorname{Hom}_{G_0}(H^q_{c}(S, \mathcal{O}(\mathfrak{p}, V_{\min})), M_{\max}) \cong \operatorname{Hom}_{L_0}(V_{\min}, H_q(\mathfrak{u}, M_{\max}))$

where $H_c^q(S, \mathcal{O}(\mathfrak{p}, V_{\min}))$ is the representation for G_0 on the compactly supported cohomology of the analytic sheaf $\mathcal{O}(\mathfrak{p}, V_{\min})$, M_{\max} is a quasisimple maximal globalization for G_0 and $H_q(\mathfrak{u}, M_{\max})$ is the representation for L_0 on the Lie algebra homology group. The reciprocity result follows from the geometric description of $H_c^q(S, \mathcal{O}(\mathfrak{p}, V_{\min}))$ and properties of the minimal and maximal globalization with respect to Lie algebra homology [1], [2]. We apply the topological Frobenius reciprocity to study the invariant Hermitian forms on $H_c^q(S, \mathcal{O}(\mathfrak{p}, V_{\min}))$. Put $I_{\min} = H_c^q(S, \mathcal{O}(\mathfrak{p}, V_{\min}))$, let $\chi_{\mathfrak{u}}$ be the determinant character for the L_0 -action on \mathfrak{u} and let $Z(\mathfrak{l})$ be the center of the enveloping algebra of the complexified Lie algebra, \mathfrak{l} , of L_0 . It turns out one would like to know that V_{\min} is isomorphic to the corresponding $Z(\mathfrak{l})$ -eigenspace in the representation $H_s(\mathfrak{u}^{\mathrm{op}}, I_{\min}) \otimes \chi_{\mathfrak{u}}$, where $s = \dim_{\mathbb{C}}(S)$ and $\mathfrak{u}^{\mathrm{op}}$ is the nilradical of the parabolic subalgebra, $\mathfrak{p}^{\mathrm{op}}$, opposite to \mathfrak{p} . To establish this last result we generalize a geometric duality theorem established by M. Zabcic for discrete series in his Ph.D thesis [4]. In this way we obtain a natural correspondence between invariant Hermitian forms on $H_c^q(S, \mathcal{O}(\mathfrak{p}, V_{\min}))$ and invariant Hermitian forms on V_{\min} .

T. Bratten: A comparison theorem for Lie algebra homology groups. Pac. J. of Math., 182 (1), (1998), 23-36.

[2] T. Bratten: A simple proof of the algebraic version of a conjecture by Vogan. J. Lie Theory, 18 (1), (2008), 83-93.

[3] D. Vogan: Unitary representations and complex analysis. In Representation Theory and Complex Analysis, Lecture Notes in Mathematics, **1931**. Springer, Berlin, Heidelberg (2008), 259-344.

[4] M. Zabcic: Geometry of discrete series. Ph.D. Thesis, University of Utah, 1988.