Motivated by a question about Frobenius reciprocity, raised by D. Vogan in [3, Question 10.2], we prove a topological Frobenius reciprocity and use it to study invariant Hermitian forms on representations. In particular, let $G_0$ be a real reductive group of Harish-Chandra class with complexified Lie algebra $\mathfrak{g}$. Suppose $\mathfrak{p} \subseteq \mathfrak{g}$ is a nice parabolic subalgebra [3]. Then the normalizer, $L_0$, of $\mathfrak{p}$ in $G_0$ is a Levi subgroup. Let $S$ be the orbit of $\mathfrak{p}$ in the corresponding generalized flag manifold and let $q$ be the vanishing number for $S$. Suppose $V_{\text{min}}$ is a minimal globalization for $L_0$ with regular, antidominant infinitesimal character and let $\mathfrak{u}$ be the nilradical of $\mathfrak{p}$. Topological Frobenius reciprocity is the natural correspondence

$$\text{Hom}_{G_0}(H^q_c(S, \mathcal{O}(\mathfrak{p}, V_{\text{min}})), M_{\text{max}}) \cong \text{Hom}_{L_0}(V_{\text{min}}, H_q(\mathfrak{u}, M_{\text{max}}))$$

where $H^q_c(S, \mathcal{O}(\mathfrak{p}, V_{\text{min}}))$ is the representation for $G_0$ on the compactly supported cohomology of the analytic sheaf $\mathcal{O}(\mathfrak{p}, V_{\text{min}})$, $M_{\text{max}}$ is a quasisimple maximal globalization for $G_0$ and $H_q(\mathfrak{u}, M_{\text{max}})$ is the representation for $L_0$ on the Lie algebra homology group. The reciprocity result follows from the geometric description of $H^q_c(S, \mathcal{O}(\mathfrak{p}, V_{\text{min}}))$ and properties of the minimal and maximal globalization with respect to Lie algebra homology [1], [2]. We apply the topological Frobenius reciprocity to study the invariant Hermitian forms on $H^q_c(S, \mathcal{O}(\mathfrak{p}, V_{\text{min}}))$. Put $I_{\text{min}} = H^q_c(S, \mathcal{O}(\mathfrak{p}, V_{\text{min}}))$, let $\chi_\mathfrak{u}$ be the determinant character for the $L_0$-action on $\mathfrak{u}$ and let $Z(\mathfrak{l})$ be the center of the enveloping algebra of the complexified Lie algebra, $\mathfrak{l}$, of $L_0$. It turns out one would like to know that $V_{\text{min}}$ is isomorphic to the corresponding $Z(\mathfrak{l})$-eigenspace in the representation $H_s(\mathfrak{u}^{\mathfrak{op}}(I_{\text{min}}) \otimes \chi_\mathfrak{u}$, where $s = \dim_{\mathbb{C}}(S)$ and $\mathfrak{u}^{\mathfrak{op}}$ is the nilradical of the parabolic subalgebra, $\mathfrak{p}^{\mathfrak{op}}$, opposite to $\mathfrak{p}$. To establish this last result we generalize a geometric duality theorem established by M. Zabcic for discrete series in his Ph.D thesis [4]. In this way we obtain a natural correspondence between invariant Hermitian forms on $H^q_c(S, \mathcal{O}(\mathfrak{p}, V_{\text{min}}))$ and invariant Hermitian forms on $V_{\text{min}}$.