A CONVERGENT NUMERICAL SCHEME FOR THE POROUS MEDIUM EQUATION WITH FRACTIONAL PRESSURE

Félix del Teso

Universidad Autónoma de Madrid, España felix.delteso@uam.es

We introduce and analyze a numerical approximation of the porous medium equation with fractional potential pressure introduced by Caffarelli and Vázquez:

$$\partial_t u = \nabla \cdot (u^{m-1} \nabla (-\Delta)^{-\sigma} u)$$
 for $m \ge 2$ and $\sigma \in (0,1)$.

Our scheme is for one space dimension and positive solutions u. It consists of solving numerically the equation satisfied by $v(x,t) = \int_{-\infty}^{x} u(y,t) dy$, the quasilinear nondivergence form equation

$$\partial_t v = -|\partial_x v|^{m-1} (-\Delta)^s v$$
 where $s = 1 - \sigma$,

and then computing $u=v_x$ by numerical differentiation. Using upwinding ideas in a novel way, we construct a new and simple, monotone and L^{∞} -stable, approximation for the v-equation. The full scheme then becomes a conservative up-wind finite volume approximation for the u-equation. We show local uniform convergence to the unique discontinuous viscosity solution for the v-problem, and using ideas from probability theory, we prove that the approximation of u converges up to normalization in $C(0,T;P(\mathbb{R}))$ where $P(\mathbb{R})$ is the space of probability measures under the Rubinstein-Kantorovich (bounded Lipschitz) metric. The analysis includes also fundamental solutions where the initial data for u is a Dirac mass.

Trabajo en conjunto con Espen R. Jakobsen (Norwegian University of Science and Technology).