Propiedades espectrales de grafos di-Cayley.

Paula Mercedes Chiapparoli

CIEM (CONICET), Universidad Nacional de Córdoba., Argentina paula.chiapparoli@mi.unc.edu.ar

Dado un grupo G y S_{ℓ} , S_r , S_m subconjuntos de G, el grafo bi-Cayley $BX(G; S_{\ell}, S_r, S_m)$ está definido sobre el conjunto de vértices $G \times \{0,1\}$, tal que los vértices (h,i) y (g,i) forman un lado dirigido si i=0 y $gh^{-1} \in S_{\ell}$ o i=1 y $gh^{-1} \in S_r$; y los vértices (h,0) y (g,1) forman un lado no dirigido si $gh^{-1} \in S_m$. Generalizamos esta noción para permitir grafos dirigidos. El grafo di-Cayley $DX(G; S_{\ell}, S_r, S_m)$ tiene conjunto de vértices $G \times \{0,1\}$ tal que los vértices (h,i) y (g,i) forman un lado dirigido si i=0 y $gh^{-1} \in S_{\ell}$ o i=1 y $gh^{-1} \in S_r$; los vértices (h,0) y (g,1) forman un lado dirigido si $gh^{-1} \in S_m$ y los vertices (h,1) y (g,0) forman un lado dirigido si $hg^{-1} \in S_m$.

Daremos las matrices de adyacencia de los grafos bi/di-Cayley y de allí obtendremos su espectro en el caso donde los conjuntos de conexión son cerrados por conjugación. En particular, en el caso $S_{\ell} = S_r = S$, los autovalores del grafo di-Cayley espejo $\Gamma = DX(G; S, S, S_m)$ están dados por

$$\lambda_{\Gamma}^{\pm}(\chi) = \frac{1}{\chi(1)}(\chi(S) \pm \chi(S_m)),$$

donde $\chi(S) = \sum_{s \in S} \chi(s)$ y $\chi \in \hat{G}$ se mueve en el conjunto de todos los caracteres irreducibles de G. Esto nos permitirá dar criterios de isospectralidad y equienergía.

Trabajo en conjunto con Ricardo A. Podestá (CIEM (CONICET), Universidad Nacional de Córdoba, Argentina).

Referencias

- [1] P. M. Chiapparoli, R. A. Podestá. On mirror di-Cayley (sum) graphs and their spectrum (work in progress).
- [2] P. M. Chiapparoli, R. A. Podestá. On di-Cayley graphs and their spectrum (work in progress).