Identificacion de la fuente en una ecuacion de Poisson con condiciones de Cauchy con tecnicas de problema inverso de momentos

María Beatriz Pintarelli

Dep. de Matemática, Fac. de Ciencias Exactas, UNLP- Dep. Ciencias Basicas, Fac. Ingenieria , UNLP, Argentina

mariabpintarelli@gmail.com

El problema de encontrar w(x,t) y $\Phi(x,t)$ en la ecuación de Poisson

$$w_{tt} + w_{xx} = \Phi(x, t)$$

sobre un dominio $E = (a_1, b_1) \times (a_2, b_2)$ o $E = (a_1, b_1) \times (a_2, \infty)$, bajo condiciones de Cauchy es posible resolverlo usando las tecnicas de problema inverso de momentos generalizados.

Se aproxima w(x,t) en dos pasos:

Consideramos la ecuación $w_{xx} - kw_{tt} = -(k+1)w_{tt} + \Phi(x,t) = G(x,t)$, y la llevamos a la ecuación integral

$$\iint_E u(-\sqrt{k}w_x + kw_t)dA = \varphi_1(r)$$

Con las tecnicas de problema inverso de momentos se encuentra una solucion aproximada $p_{1n}(x,t)$ para $-\sqrt{k}w_x + kw_t$.

Entonces consideramos la ecuación $-\sqrt{k}w_x(x,t) + kw_t(x,t) = p_{1n}(x,t)$ y la llevamos a la ecuación integral

$$\int_{a_1}^{b_1} \int_{a_2}^{b_2} K(m, r, x, t) w(x, t) dt dx = \varphi_2(m, r)$$

con

$$\varphi_2(m,r) = \int_{a_1}^{b_1} u(m,r,x,b_2)kw(x,b_2) - u(m,r,x,a_2)kw(x,a_2)dx - \int_{a_2}^{b_2} u(m,r,b_1,t)\sqrt{k}w(b_1,t) - u(m,r,a_1,t)\sqrt{k}w(a_1,t)dt - \int_{a_2}^{b_2} \int_{a_1}^{b_1} p_{1n}(x,t)udxdt$$

La resolvemos y hallamos una aproximación $p_{2n}(x,t)$ para w(x,t).

Finalmente consideramos $w_{xx}(x,t) + w_{tt}(x,t) = \Phi(x,t)$ la llevamos a la ecuación integral

$$\therefore \iint u\Phi(x,t)dA = G(m,r) - \int_{a_2}^{b_2} (w(b_1,t)u_x(m,r,b_1,t) - w(a_1,t)u_x(m,r,a_1,t)) dt - \int_{a_1}^{b_1} (w(x,b_2)u_t(m,r,x,b_2) - w(x,a_2)u_t(m,r,x,a_2)) dx + \iint_E wu \left(-\left(\frac{m}{b_1}\right)^2 + \left(\frac{r}{b_2}\right)^2 \right) dA = \varphi_3(m,r)$$

Reemplazamos w(x,t) por $p_{2n}(x,t)$ en $\varphi_3(m,r)$. y se halla una solucion aproximada $p_{3n}(x,t)$ para $\Phi(x,t)$. Se encuentra una cota para el error de la solucion estimada y se ilustra el metodo con ejemplos.